Linear Solution
− x 1 + 3 x 2 + 6 x + 3 − 7 x 4 = 7 2 x 1 − 4 x 2 − 10 x 3 + 10 x 4 = − 8 S o l u t i o n : x 1 = 2 + 3 t 1 − t 2 x 2 = 3 − t 1 + 2 t 2 x 3 = t 1 x 4 = t 2 w h ere t 1 an d t 2 a re f ree p a r am e t ers M a t r i x f or m : B = [ − 1 2 3 − 4 6 − 10 − 7 10 ] ⎣ ⎡ x 1 x 2 x 3 x 4 ⎦ ⎤ = [ 7 − 8 ]
Product of Matrices
k × m ma t r i x = ⎣ ⎡ a 11 a 21 a k 1 a 12 a 22 a k 2 a 1 m a 2 m a km ⎦ ⎤
First index is the row, second index is the column
Let A be an m x n matrix and B be an n x r matrix then AB is an m x r matrix whose ij entry is the product of the i'th row of A times the j'th column of B
B = [ 2 5 1 8 3 0 ] ⎣ ⎡ 1 − 1 2 2 1 2 0 − 2 3 ⎦ ⎤ = [ 7 − 3 11 18 7 − 16 ] 2 ∗ 1 + 1 ∗ − 1 + 3 ∗ 2 = 7 2 ∗ 2 + 1 ∗ 1 + 3 ∗ 2 = 11 2 ∗ 0 + 1 ∗ − 2 + 3 ∗ 3 = 7
Ex:
⎣ ⎡ 1 4 7 2 5 8 3 6 9 ⎦ ⎤ ⎣ ⎡ 0 1 0 ⎦ ⎤ = ⎣ ⎡ 2 5 8 ⎦ ⎤
or (identity matrix)
⎣ ⎡ 1 4 7 2 5 8 3 6 9 ⎦ ⎤ ⎣ ⎡ 1 0 0 0 1 0 0 0 1 ⎦ ⎤ = ⎣ ⎡ 1 4 7 2 5 8 3 6 9 ⎦ ⎤
Properties
In general: AB = BA
A ( B + C ) = A B + A C it is associative ( A + B ) C = A C + BC = A BC
The transpose A T of A is the matrix obtained by flipping the rows and columns of A
[ 1 4 2 5 3 6 ] T = ⎣ ⎡ 1 2 3 4 5 6 ⎦ ⎤ A T = A ( A B ) T = B T A T
A is symmetric if A T = A , example::
Suppose v 1 an d v 2
A v 1 = [ 2 3 ] , A v 2 = [ 5 0 ] then A ( 3 v 1 + 2 v 2 ) = 3 A v 1 + 2 A v 2 = 3 [ 2 3 ] + 2 [ 5 0 ] = [ 16 9 ]
Augmented matrix:
A x = b
[ A ∣ b ]