Let A be an N×N matrix v=0 is an eigenvector of A if Av=λv for some scalar λ, which is the eigenvalue of v.
Finding Eigenvectors
Suppose v=0 is an eigenvector of A.
Av=λvAv−λv=vv(A−λIN)=0
Therefore, A−λI is singular, i.e, non-invertible.
For 2x2 Matrix
A=[acbd]
We know A is singular if and only if ad−bc=0.
A−1=ad−bc1[d−c−ba]
or
det([acbd])=ad−bc
If v is an eigenvector of A, with Eigen value λ then det(A−λI)=0
Example
Find the eigenvalues and eigenvectors.
A=[1331]A−λI=[1331]−[1001]=[1−λ331−λ]det(A−λI)=(1−λ)2−9λ2−2λ+1=9(λ−4)(λ+2)=0eigenvalues:λ1=4,λ2=−2Now find coresponding eigenvectors:We need xof(A−λ1I)x=0Substitute in([1331]−[4004])[x1x2]=0([−333−3])[x1x2]=0reduce (for 2x2 this is not neccesary)[−3030]−x1+x2=0Eλ1=span([11])The other solution is the same, but with -2([1331]−(−2)[1001])[x1x2]=0[3333][x1x2]=0x1+x2=0Eλ2=span([1−1])
Complex Numbers Example
Complex numbers have the form a+bi where a and b are real numbers.
a+bi+c+di=(a+c)+(b+d)i← Treat imaginaries like variables
All complex numbers follow the rules of algebra.
(a+bi)(c+di)=ac+adi+bci+bd(i)2←i2 is a real number = −1.