Derivation from standard differential equation for SHM:
dt2d2x+w2x=0v=dtdx;dt=vdx;a=dtdv=dt2d2xdtdvdt+w2x(vdx)=0vdtdvdt+w2xdx=0ϵ={21v2+21w2x2}=constantv=±2ϵ−w2x2∫±1−u2du=sin−1u+constant or cos−1u+constant
Springs
w=mk
f=2π1mk
T=2πkm
Pendulums
Simple
For θ<<1,sin(θ)≈θ
Angular Frequency:
w=2πf=Lg
Small amplitude: ma=−mgθ
For small theta: θ=θmaxsinLgt (from hyperphysics)
Period can be approximated similarly to the spring: T=2πgL
Physical
w=IMgl (Small angle approx)
T=2πMglI
τnet=Iα
l = distance from pivot to center of mass
Damped Oscillations
x(t)=Ae−bt/2mcos(wt+ϕ0)
b=damping constant
Where
w=mk−4m2b2
Energy: E=E0eτ−tt=τwhen E=.37E0
Traveling Waves
Linear Density
μ=Lm
Ts=tension
Wave speed: v=fλ=μTs=kw
Note: v=fλ is from v=timedistance
Light
c=fλ
c=299,792,458m/s
Index of refraction =speed of light in the material (v)speed of light in vacuum (c)=vc
For material: fmat=fvac
Sound
Velocity
vsound=ρB
B=Bulk moduliPa
ρ=densitykg/m3
Dry air at 20degC ≈343m/s
Beat Frequency = ∣f1−f2∣
Phase
ϕ1=kx1−wt+ϕ0
ϕ2=kx1−wt+ϕ0
Phase difference Δϕ=2πλΔX
Power
I=4πr2Psource
I Is in W/m2 and Psource is in W
Decible
β=10dblog10(I0I)
I0=1×10−12W/m2
Doppler Effect
For sound waves
Approaching Source
f+=1−vs/vf0 or fo=fs(vw−vsvw)
Receding Source
f−=1+vs/vf0 or fo=fs(vw+vsvw)
Approaching Observer
f+=(v1+vo)f0 or fo=fs(vwvw+vo)
Receding Observer
f−=(v1−vo)f0 or fo=fs(vwvw−vo)
For observers the wavelength doesn't change when they move.